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Abstract. - We describe homogeneous, isotropic, three-dimensional turbulence in a dilute 
solution of neutral, flexible chains. Energy flows by the usual cascade down to a scale r* such 
that the shear rates U(r*)/r* (U being the velocity) become equal t o  the relaxation rate of one 
coil. At small scales r, the molecules follow affinely the deformation of a local volume element. 
At a certain smaller scale r** the elastic stresses in the coils become comparable to the Reynolds 
stresses. The polymer truncates the cascade when r** becomes larger than the usual 
Kolmogorov limit rk. This defines a critical concentration, which depends on both polymer and 
flow parameters. 

Very dilute polymers (of concentration c < 100 p.p.m.) cause a significant drag reduction 
in turbulent flow[l]. Recent experiments with polymer injected far from the walls[ZI 
suggest that the effect need not to be connected with the laminar boundary layer. This 
observation led us to some tentative thoughts on homogeneous, isotropic, turbulence at  high 
Reynolds numbers in a polymer solution, to be described below. 

1. A related laminar problem. 

Our starting point is a discussion of a converging, laminar flow at the entry of a 
capillary [3,4] (see fig. 1). At large distances r from the entrance point, the shear rates are 
small and the polymer coils retain their equilibrium shape, while drifting towards the entry. 
At a certain distance rY: the local shear rate becomes equal to the Zimm relaxation rate of the 
coils 1h. From this moment on, the chains must follow the ambient fluid without 
adjustment: they are affinely deformed. For instance, in 3-dimensional converging flow, the 
dimensionless elongation A of the coils is A = ( r * / ~ ) ~ ,  while in a %dimensional case, A = rY:/r. 
Ultimately the coil reaches the capillary, and enters if its lateral size is smaller than the 
capillary diamder [3]. 



520 EUROPHYSICS LETTERS 

Fig. 1. 

2. The trapping length e. 
Let us transpose these ideas to 3-dimensional turbulence, following the Kolmogorov 

picture [5]: we start with a prescribed energy dissipated per unit mass E ;  at large scales r 
(Small shear rates) the coils are undistorted, and the velocity U(r) follows 

At a certain scale 9 the shear rate becomes equal to 7-l 

- 1 
T* P . 

Thus r* = € l f 2  73'2 is independent of polymer concentration, but dependent on both 7 and E .  

3. The affine deformation regime. 

Here again we expect to have a relation between the elongation A and the scale r, of the 
general form 

where n is an exponent which depends on the detailed statistics of the deformation matrix 
( 2 3 n ) .  The molecules become elongated, but, for a certain range of spatial scales, their 
reaction on the flow is still negligible. Thus we retain the Kolmogorov equation (1) at scales 
r < r*. 

4. The elastic limit. 

If each coil behaves like small spring, and the deformation A implies an elastic energy 
(per em3) 

1 1 -G(A - 1)*--GA2 
2 2 (A >> 1) , 
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The elastic modulus is G 2: v kT ( v  being the number of coils/cm3 and kT the thermal 
energy) (’). The flow behaviour is strongly modified when this elastic energy becomes equal 
to the kinetic energy. This defines a second characteristic length 9*, such that 

(4) 1 1 2pU2(9*)  = -GA2(r**) 2 , 

p being the density of the fluid. Equivalently, eq. (4) may be considered as a balance 
between Reynolds stresses and elastic stresses. It is convenient to introduce a characteristic 
velocity s = (G/P)-~’~ and a dimensionless ratio + = s/U(r*). Then eq. (4) can be rewritten as 

3 a=- r** 
r*=P, l + 3 n ’  (5) 

In the small concentration regime of interest, + is small, and 9* << 9. Elongation cannot 
proceed further than the limit A@**): turbulence is suppressed at small scales; each volume 
element develops large tensions, as in a tubeless siphon [6]. 

5. Comparison of limits. 

In the absence of polymer, the energy cascade went down to a minimal scale r k  controlled 

Yk = r*(Re*)-3’4, (6) 

by viscous dissipation (5) 

where Re* is the Reynolds number of the scale 9 

The presence of the polymer will alter the cascade if, and only if, the elastic cut off r** 
becomes larger than the Kolmogorov cut-off rk .  Thus, for a given flow, and a given choice of 
polymer (defining 9) there is a critical concentration co, or an equivalent critical + = +o, such 
that = rk .  This gives 

$ > (cia = , (7) 

$0 and eo depend on both flow parameters and polymer parameters in an intricate way. One 
useful presentation of eq. (7) is in terms of the (low shear) added viscosity due to the 
polymer 8~ 2: v ;  kT 

where p is the kinematic viscosity of the solvent, and m = 3/2a. 

(I)  For coils in good solvents, at h>>l,  the energy is -A5” rather than A2: see PINCUS, 
Macromolbcules, 9 (1976) 386. We ignore these refinements for the moment. 
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6. Discussion. 

The conventional &me criterion. El] for the Toms effect amounts to assuming that some 
shear rates in the cascade are faster than l h ,  i . e .  that there does exist a scale r*. This is a 
necessary, but not sufficient condition for polymer effects: the crucial condition is eq. (7) or 
(8). When the concentration is beyond threshold, the Kolmogorov cascade is truncated. 
Studies of drag reduction in turbulent, free shear, flows (for which the cascade model is 
rather plausible) all seem to demonstrate a clear suppression of small scales [7,81. For 
turbulent pipe flow, the relation to cascade theory is more complex. We can calculate a limit 
r**(y) at all distances y from the wall; the structure of this limit is very different from the 
cut-off of Lumley [l], based on a pure renormalization of viscosity. But the result is also a 
thickening of the buffer layer. 

Note finally that we have decribed only one ecenario. for the cascade. Some others can 
exist: for instance eq. (3) may break down at a point where the chains are fully elongated. In 
the first scenario described by eqs. (31, (4), the essential feature is the elast ic  behaviour of 
coils at high frequencies. 

* * *  
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